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The unprecedented science opportunities enabled by LSST's wide-fast-deep mode of operation are accompanied by equally unprecedented data analysis challenges, due 
to the huge size and synoptic scope of LSST data products. The most obvious challenges are those associated with processing the petabyte-scale fundamental LSST 
image data. But the challenges will not end with the production of official LSST catalogs and databases. Science with LSST data will present new data analysis challenges 
spanning a broad range of sizes, types, and complexity, requiring innovative methodological research across this full range. We present representative examples of LSST 
data analysis problems of various scales, displaying some of the diversity of astroinformatics/astrostatistics research astronomers using LSST data must undertake. 

Kiloscale Problems Megascale Problems

Gigascale Problems... and Beyond

• “Kiloscale” = 102 to 104 objects or samples
• Storage requirements:  Modest
• Challenges are essentially statistical:  New 

methods for variability, periodicity, outlier & 
changepoint detection; upper limits; population 
modeling using catalogs with heteroscedastic 
source measurement errors

• “Megascale” = 105 to 107 objects or samples
• Storage requirements:  Datasets of several 

megabytes to gigabytes, corresponding to "low-
volume" queries against LSST data products

• Challenges are both statistical and 
computational:  Methods must be computationally 
efficient; advanced data visualization techniques 
are needed

• Extract a major portion of the LSST Source Catalog (e.g., the time series for all 
photometrically variable objects)

• Sort the known variability classes via cuts or bins, with (potentially) hundreds of 
thousands of training examples of each class (perhaps 1000’s of classes)

• Characterize the temporal behavior of each variability class (e.g., using 10-100 
Fourier or wavelet coefficients) using a portion of the Source Catalog (= the 
training set)

• Use the remainder of the Source Catalog (= the test set) to test the accuracy of 
each classifier

• Iterate the above steps until a complete set of high-accuracy classifiers are 
discovered for all classes of optical variability 

• Provide classifications for all new optical transients discovered

Sample Problem #2:  LSST Correlation Engine
• Extract a major portion of the LSST Object Catalog (e.g., all stars, or all 

galaxies, or all Solar System objects)
• Develop fast algorithms to examine correlations using the 200+ science 

catalog database attributes—N-point, or in combinations of 2-at-a-time, 3-
at-a-time, etc.—to discover new physically significant correlations

• Example:  N-point correlation functions via kd-trees (Moore et al. 2001)
• Discover new classes of objects and/or new classes of behavior within a 

class of objects

Some goals of LSST gigascale data mining
• Provide rapid probabilistic classifications for 100,000 events each night
• Find new “fundamental planes” of correlated astrophysical parameters
• Compute multi-point multi-dimensional correlation functions over the full 

panoply of astrophysical parameter spaces
• Discover voids in interesting parameter spaces (e.g., period gaps)
• Discover new properties of known classes
• Discover improved rules for classifying known classes of objects
• Identify novel, unexpected temporal behavior 
• Hypothesis testing – verify existing (or generate new) astronomical 

hypotheses with high confidence, using millions of training samples
• Serendipity – discover rare one-in-a-billion objects or classes of objects

• “Gigascale” = 108 to 1010 objects or samples
• Large-scale pixel-based computation will be tera- or peta-scale
• Storage requirements:  Multiple-terabyte datasets, corresponding 

to "high-volume" queries against LSST data products; out-of-core 
processing needed; extreme examples can go to petabytes

• Example gigascale and beyond datasets:
‣ Calibrated image data for a small number of fields (~109 pixels)
‣ Catalogs of very large populations (108 to 1010  stars/galaxies)
‣ Large parts of the Level-One Source Catalog, for serendipitous 

discovery (up to 103 attributes for 106 to 1010 objects)
‣ Images for pixel-based calculations of new object attributes 

(petascale)
• Challenges are fundamentally computational:  Even basic statistical 

methods will require innovative algorithms; high-performance 
parallel/distributed/cloud computing essential

Sample Problem #1:  LSST Temporal Behavior Classifier

• Example kiloscale datasets:
‣ Multicolor, multi-epoch photometry for a single 

Object Catalog object
‣ Catalogs for modest-sized populations (TNOs, 

GRBs, microlensing events, rare stellar or 
galaxy types...)

• Example megascale datasets:
‣ Multi-epoch image data for extended objects 

(sample=pixel)
‣ Catalogs for large populations (quasars; 

variable Galactic stars; low redshift galaxies...)
‣ LSST follow-up measurements for objects in 

previously-compiled catalogs

Sample Problem:  Population modeling 
accounting for source uncertainties Sample Problem:  Source detection with 

multi-epoch/multi-band imaging dataCatalogs tabulate source properties that are uncertain 
due to noise, counting uncertainties, or “scatter” in 
properties inferred from correlations. E.g.:
• Flux (magnitude) and color uncertainties
• Photo-z uncertainties
• Uncertainties in luminosities based on fundamental 

plane or Tully-Fisher relations
Ignoring uncertainties can corrupt inferences about 
population properties. The statistics literature on 
measurement error or errors-in-the-variables models 
provides tools for taking source uncertainties into 
account.

Example:  TNO number counts
• Simulate TNOs from a “rolling 

power law” flux distribution, with 
power law slope α at fiducial flux 
Φfid, and rate of change of slope α’

• Estimate α and α’ two ways:
‣Maximum likelihood (ML, plugs in best-fit fluxes)
‣Maximum marginal likelihood (MML, Bayesian 

approach averaging over flux errors)

• Simulate observations from a photon-counting 
instrument, with ~15% flux errors at threshold

Illustration of classification based on colors and light curve shape, period and 
amplitude. Left:  Relationship between the photometric root-mean-square 
scatter measured in SDSS g and r bands for point sources with colors typical 
of RR Lyrae stars. Dashed lines mark the region consistent with RR Lyrae 
light curves. Middle: Examples of RR Lyrae light curves (blue: c type, red: ab 
type) measured by SDSS.  Right: Distribution of RR Lyrae stars of both types 
in the amplitude vs. period diagram (measured by the OGLE survey).

• Results for 100 simulated surveys, green=ML, 
blue=MML; crosshair shows true values
‣ Left: Surveys of 100 objects; ML noticeably biased 

but parameter uncertainties are larger than bias
‣Right: Surveys of 1000 objects; ML converges away 

from truth (“inconsistent”); MML is accurate
Lessons/issues for LSST
• Population modeling must explicitly account for 

source uncertainties
• Small uncertainties merely postpone the inevitable; 

need algorithms that scale to megascale/gigascale

What is the best way to combine multiple images to 
detect very faint objects?  The simplest approach—
image registration & stacking—can behave poorly, e.g., 
for transients.

Mahalanobis distance
• Standard tool from classical multivariate analysis
• Distance D of a sample vector x from a population 

with mean location µ and covariance matrix Σ:

D2 = (x− µ) · Σ−1 · (x− µ)

• Locally, the noise is assumed to be homogeneous 
and Σ is estimated using the neighboring pixels

• Uncorrelated case (diagonal Σ) reduces to χ2 co-
addition approach of Szalay et al. (1999)

• Incorporating correlations between epochs/bands can 
improve power (e.g., takes advantage of background 
correlations)

• Sensitive to transients as well as persistent sources
• Computationally efficient

Top-bottom: 3-, 5-, 7-epoch co-added B band images from 
Palomar-QUEST with “4σ” detections circled.  Left: Traditional 
pixelwise averaging (w. outlier removal).  Right: Mahalanobis 
distance maps.  Multiple new detections in lower right are 
likely due to a minor planet passing through the field.

Lessons/issues for LSST
• Basic D2 makes no use of PSF; this exaggerates 

noise if few epochs/bands used; explore use of PSF 
or simpler adjacency criteria

• Use false discovery rate (FDR) control or other 
multiple testing methods to adaptively set detection 
thresholds to meet survey criteria 
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