
A main component of LSST's nightly Image Processing Pipeline is image subtraction.  We present advances in the modeling of basis functions for image subtraction convolution kernels, 
including atomic decomposition and rapid selection of basis functions from a pre-computed dictionary.  We also describe methods to model the spatial variation of the kernel, including methods 

adapted from the Geostatistical community.  These techniques are being implemented within the LSST Data Management build system.   

In image subtraction, a Template image is subtracted from a nightly Science image; all that remains in the resulting Difference image are objects that have changed in brightness or position.  The Template 
image is generally high signal-to-noise and defect free.  To account for the different image qualities, a PSF-matching Kernel must be generated.  This Kernel is typically modeled as a linear combination of 

basis functions, with the user free to choose the basis set.  Ideally this basis set should compactly model the Kernel.  Given an ensemble of Kernels generated from multiple objects across the image 
(analogous to generating a PSF model from an ensemble of point sources) a spatial model must be built so that the PSF-matching Kernel may be applied everywhere in the image. 
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In this case, the PSF matching Kernel is a convolution Kernel 
applied to the Science image.  Because the Science image has 

better seeing, the Kernel smooths the image.  This creates a 
“compact” Kernel with most of its power in the center.  However, 

because the Science image is low signal-to-noise, the 
correlations between the pixels induced by the smoothing 

become significant, as can be seen from the structure in the 
resulting difference image.  
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In this case, the PSF matching Kernel is a deconvolution Kernel 
applied to the Template image.  Because the Template image 

has better seeing, the Kernel sharpens the image.  This creates 
a “noisy” Kernel with much high frequency power.  However, 

because the Template image is high signal-to-noise, 
deconvolution is feasible and the noise in the difference image 

appears white. 

Convolution vs. Deconvolution 
The first consideration is : which image do you apply the 
Kernel to?  In general it is good practice to keep the pixels 

in the Science image untouched; (de)convolving with a 
Kernel spreads the impact of bad pixels around, and tends 
to correlate the noise in the image, which is not desirable.  
This suggests that we should always apply the Kernel to 

the Template image, which is defect-free and has low 
noise. 

However, a second consideration is : is the derived Kernel 
a convolution or deconvolution Kernel?  If the Kernel 
“sharpens” the image, it is a deconvolution Kernel; if it 
“smooths” the image, it is a convolution Kernel.  We 
compare and contrast the two operations in the case 

where the Template image has worse seeing than the 
Science image.  

Choice of Basis Set 
The next consideration is : how do you model the Kernel?  Typically, we 
want to decompose the Kernel using a basis set, such that : K = Σ ai Bi.  

Here “B” are the basis vectors, and “a” are the coefficients in front of 
each.  The user is free to choose this basis set.  However, an optimal 
basis will model the Kernel compactly, meaning you can truncate the 

approximation using a small number (i) of these functions.  

Orthogonal Bases 
For orthogonal bases, Bi • Bj = δij and the determination of the  

coefficients “ai” is trivial : ai = K • Bi.  Standard orthogonal  
bases include :  

•  Delta functions : This pixelized, “function free” representation allows for any 
shape for the Kernels, including deconvolution Kernels.  The downside is that 
they may be noisy, particularly in the outskirts of the Kernel. 

•  Sum of Gaussians : The commonly used Alard & Lupton (1998) method 
assumes the Kernel may be modeled by the sum of N=3 Gaussians of different 
widths.  This has proven very useful in practice, and made industrial-scale 
difference imaging feasible.  However the widths and number N of the 
Gaussians are not free to vary in the fit.  This restricts the generality of the 
model.  It is also difficult to model Kernels where the power is off-center, or 
noisy Kernels that deconvolve. 

•  Principal Components : After you create a set of Kernels, you may derive an 
orthogonal basis set from the data itself.  This is an optimal basis in the sense 
that it by design compactly models the input Kernels.  However, it may not 
model features that are not present in the input data.  This makes it perilous to 
interpolate between / extrapolate beyond the input data.  Example principal 
components (eigenKernels) are shown below. 
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Sets of non-orthogonal bases may be put together into an 
overcomplete dictionary.  The challenge here is to quickly find the 

optimal Kernel bases to use for a particular input image.  Since the 
dictionary is overcomplete, the solution will be non-unique.  However, 
metrics such as the minimum L1 norm of the coefficients “ai” may be 
used to define an optimal superposition of basis elements.  These 

methods of “atomic decomposition” are well established in the 
statistics community.  One method to rapidly prune inappropriate 

bases is to store the dictionary in a tree-based structure using e.g. K-
means clustering. 

Non-Orthogonal Bases 

Compared to deconvolution Kernels, convolution Kernels tend to be more self-similar.  This means 
you can approximate a convolution Kernel with fewer eigenBases.  It also means that you expect 
the Kernel function to vary spatially in a well-behaved (low frequency) manner.  This compactness 

is reflected in the spectrum of eigenValues associated with the eigenKernels.  This is demonstrated 
above, where the solid red line shows the cumulative fraction of eigenValues for convolution 

Kernels, while the dotted blue line shows this for deconvolution Kernels.  On the left, the 
convolution Kernels are very self-similar; on the right they are less so due to spatial variation of the 

Kernel. 

Choice of Spatial Model 
The final consideration is, given a set of Kernels determined 

at various points on an image, how do you determine a 
spatially varying function that describes this Kernel at all 

points in the image?  Typically the bases “B” are held fixed, 
and the coefficients “a” are determined as a function of x,y.  
We are exploring various ways to interpolate in between the 
Kernel constraints.  We are exploring application of these 

functions to the pixels in the Kernels, as well as to the 
coefficients in front of the basis functions. 

•  Splining : These piecewise polynomial curves are very fast to 
evaluate and do not suffer from the Runge phenomena (ringing 
about the true function; analogous to the Gibbs phenomena in 
sinusoidal functions) encountered when fitting polynomial 
functions.  Popular variants are cubic splines and B-splines, which 
use basis functions across the spine. 

•  Polynomials  :  These functions have historically been used in 
image subtraction software to model the spatial variation of 
Kernels.  However, too-high order polynomials may lead to poor 
subtraction in the corners of the image, where there are fewer 
constraints on the function.  Chebyshev polynomials are less 
sensitive to the the Runge phenomena; the roots of Chebyshev 
polynomials are typically used as nodes when splining functions. 

 Kriging : This technique is adopted from the Geostatistical 
community.  Kriging is a least squares estimation algorithm that 
makes use of the Variogram derived from the various constraints 
on the function.  The Variogram is a stochastic model describing 
the mean squared difference of the Kernels as a function of 
distance (lag).  Example Variograms are shown below with 
different functional forms. 
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V(h) = Σ i,j | Ki – Kj |2 

h2 = (xi – xj)2 + (yi - yj)2  


